Day 1: What is Machine Learning? – ML Crash Course

MLcourse

Day 1: What is Machine Learning? – ML Crash Course

First of all, let us start with the Definition and basic intuition of the concept of Machine Learning!

Machine Learning is a subset of Scientific Computing, where problems that are almost impossible to solve manually by a human are solved with ease. So let us learn about all the concepts that are related to them in one short blog post! This post might be a bit difficult to understand but I expect all of you to cope up with it! Please read it again and again until you understand the concepts clearly.

Hey Guys! This is Manas from csopensource.com – “Your one-stop destination for everything Computer Science”.

Generalized Topics under AI

  • Algorithms
  • Data Structures
  • Data Preprocessing
  • Statistics
  • Analytics
  • Mathematics and Vector operations
  • Deep Learning
  • Visualization.

Explanation

  • Algorithms, Algorithms are basically a sequence or a set of rules given to a computer to perform a task or other such problem-solving topics. examples of Algorithms are Binary Search Tree, Sorting Algorithm etc.
  • Data Structures, Data Structures deal with the storing of Data on a computer according to the kind of work you are going to perform on the data.  Examples of Data Structures are Queue, Hashmap,  Linked List, Stacks etc.
  • Data Preprocessing. Basically, Data Preprocessing is a topic that has been derived from Data mining, It is the process of converting real-life data which is often incomplete, inconsistent and lacking data that is understandable. This has proven to be the best method for dealing with incomplete or lacking forms of Data.
  •   Statistics, Analytics.  This topic focuses on the way to work with the data by using Statistical Analysis and general Analysis of the data.
  • Mathematics and Vector Operations, Mathematics is the beating heart of Computer Science. Under the hood, machine learning is just performing vector calculations and manipulating Matrices. This just proves to say that math is embedded everywhere!  Information is processed in the form of Vectors or Numpy arrays.
  • Deep learning.  This is a subset of Machine Learning which unlocks a lot of hidden possibilities in the field of ML. Deep learning models have outperformed any other type of Machine Learning model pretty much every time! The intuition behind this is that we can make the computer understand certain patterns by itself ( learning ) on the Data by looking at thousands of examples. We just specify the input and the output while training, the model itself understands the connections that it needs to make. In a way, this mimics the Human Brain. The way in which the model learns will be discussed in a future blog.
  • Visualization. We give the input to the model and get the output after performing some steps but often the results aren’t in Human readable format. This issue gets cleared with Visualization. The intuition behind Visualization is to make the output more human-friendly!

So according to me, these are the main things that you need to know before diving into the world of Machine learning!

Now as we know the concepts that contribute to Machine Learning let us see what it actually means.

  • Machine learning is a field of computer science that uses statistical techniques to give computer systems the ability to learn with data, without being explicitly programmed. This means that we do not have to Hard-code every single aspect and feature.  During the training phase we just, Provide the input and desired output and the model maps the connections between them by learning through many examples.

So by now, you guys should have got a good understanding of the concepts and core fundamentals about Machine Learning.

Now let’s ask the question – Why is machine learning necessary?

Machine Learning helps us a lot when we have an abstract idea and no real way of implementing it in code! We can specify our input and the desired output based on that particular input while training and the model understand by itself. Another major advantage is that Machine Learning when used correctly, can perform tasks with a lot of precision that normal code just can’t do!

Hope you guys learned something new and found some valuable information! Thank you guys it has been a pleasure to speak about this topic. See you soon!

-THANK YOU

Manas Hejmadi

I am a boy who studies in 9th grade at Bangalore! I have a good knowledge of computer programming, AI and UI Design. I aspire to create a tech startup of my own!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.